Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(1): e14337, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069515

RESUMEN

The effect of climate warming on community composition is expected to be contingent on competitive outcomes, yet approaches to projecting ecological outcomes often rely on measures of density-independent performance across temperatures. Recent theory suggests that the temperature response of competitive ability differs in shape from that of population growth rate. Here, we test this hypothesis empirically and find thermal performance curves of competitive ability in aquatic microorganisms to be systematically left-shifted and flatter compared to those of exponential growth rate. The minimum resource requirement for growth, R*-an inverse indicator of competitive ability-changes with temperature following a U-shaped pattern in all four species tested, contrasting from their left-skewed density-independent growth rate thermal performance curves. Our results provide new evidence that exploitative competitive success is highest at temperatures that are sub-optimal for growth, suggesting performance estimates of density-independent variables might underpredict performance in cooler competitive environments.


Asunto(s)
Cambio Climático , Fitoplancton , Temperatura , Crecimiento Demográfico , Clima
2.
Nat Ecol Evol ; 7(12): 1993-2003, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932384

RESUMEN

Understanding how temperature determines the distribution of life is necessary to assess species' sensitivities to contemporary climate change. Here, we test the importance of temperature in limiting the geographic ranges of ectotherms by comparing the temperatures and areas that species occupy to the temperatures and areas species could potentially occupy on the basis of their physiological thermal tolerances. We find that marine species across all latitudes and terrestrial species from the tropics occupy temperatures that closely match their thermal tolerances. However, terrestrial species from temperate and polar latitudes are absent from warm, thermally tolerable areas that they could potentially occupy beyond their equatorward range limits, indicating that extreme temperature is often not the factor limiting their distributions at lower latitudes. This matches predictions from the hypothesis that adaptation to cold environments that facilitates survival in temperate and polar regions is associated with a performance trade-off that reduces species' abilities to contend in the tropics, possibly due to biotic exclusion. Our findings predict more direct responses to climate warming of marine ranges and cool range edges of terrestrial species.


Asunto(s)
Cambio Climático , Frío , Temperatura
3.
Glob Chang Biol ; 28(19): 5726-5740, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899628

RESUMEN

The California Current Marine Ecosystem is a highly productive system that exhibits strong natural variability and vulnerability to anthropogenic climate trends. Relating projections of ocean change to biological sensitivities requires detailed synthesis of experimental results. Here, we combine measured biological sensitivities with high-resolution climate projections of key variables (temperature, oxygen, and pCO2 ) to identify the direction, magnitude, and spatial distribution of organism-scale vulnerabilities to multiple axes of projected ocean change. Among 12 selected species of cultural and economic importance, we find that all are sensitive to projected changes in ocean conditions through responses that affect individual performance or population processes. Response indices were largest in the northern region and inner shelf. While performance traits generally increased with projected changes, fitness traits generally decreased, indicating that concurrent stresses can lead to fitness loss. For two species, combining sensitivities to temperature and oxygen changes through the Metabolic Index shows how aerobic habitat availability could be compressed under future conditions. Our results suggest substantial and specific ecological susceptibility in the next 80 years, including potential regional loss of canopy-forming kelp, changes in nearshore food webs caused by declining rates of survival among red urchins, Dungeness crab, and razor clams, and loss of aerobic habitat for anchovy and pink shrimp. We also highlight fillable gaps in knowledge, including specific physiological responses to stressors, variation in responses across life stages, and responses to multistressor combinations. These findings strengthen the case for filling information gaps with experiments focused on fitness-related responses and those that can be used to parameterize integrative physiological models, and suggest that the CCME is susceptible to substantial changes to ecosystem structure and function within this century.


Asunto(s)
Cambio Climático , Ecosistema , Animales , California , Peces/fisiología , Cadena Alimentaria , Oxígeno
4.
Proc Biol Sci ; 289(1979): 20220938, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35855607

RESUMEN

Historical and long-term environmental datasets are imperative to understanding how natural systems respond to our changing world. Although immensely valuable, these data are at risk of being lost unless actively curated and archived in data repositories. The practice of data rescue, which we define as identifying, preserving, and sharing valuable data and associated metadata at risk of loss, is an important means of ensuring the long-term viability and accessibility of such datasets. Improvements in policies and best practices around data management will hopefully limit future need for data rescue; these changes, however, do not apply retroactively. While rescuing data is not new, the term lacks formal definition, is often conflated with other terms (i.e. data reuse), and lacks general recommendations. Here, we outline seven key guidelines for effective rescue of historically collected and unmanaged datasets. We discuss prioritization of datasets to rescue, forming effective data rescue teams, preparing the data and associated metadata, and archiving and sharing the rescued materials. In an era of rapid environmental change, the best policy solutions will require evidence from both contemporary and historical sources. It is, therefore, imperative that we identify and preserve valuable, at-risk environmental data before they are lost to science.

5.
Philos Trans R Soc Lond B Biol Sci ; 375(1814): 20190454, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33131443

RESUMEN

Variability in the environment defines the structure and dynamics of all living systems, from organisms to ecosystems. Species have evolved traits and strategies that allow them to detect, exploit and predict the changing environment. These traits allow organisms to maintain steady internal conditions required for physiological functioning through feedback mechanisms that allow internal conditions to remain at or near a set-point despite a fluctuating environment. In addition to feedback, many organisms have evolved feedforward processes, which allow them to adjust in anticipation of an expected future state of the environment. Here we provide a framework describing how feedback and feedforward mechanisms operating within organisms can generate effects across scales of organization, and how they allow living systems to persist in fluctuating environments. Daily, seasonal and multi-year cycles provide cues that organisms use to anticipate changes in physiologically relevant environmental conditions. Using feedforward mechanisms, organisms can exploit correlations in environmental variables to prepare for anticipated future changes. Strategies to obtain, store and act on information about the conditional nature of future events are advantageous and are evidenced in widespread phenotypes such as circadian clocks, social behaviour, diapause and migrations. Humans are altering the ways in which the environment fluctuates, causing correlations between environmental variables to become decoupled, decreasing the reliability of cues. Human-induced environmental change is also altering sensory environments and the ability of organisms to detect cues. Recognizing that living systems combine feedback and feedforward processes is essential to understanding their responses to current and future regimes of environmental fluctuations. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.


Asunto(s)
Adaptación Biológica , Cambio Climático , Ambiente , Animales , Ecosistema , Plantas
6.
Nature ; 580(7804): 460-461, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269374
7.
Proc Biol Sci ; 286(1915): 20191409, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31744434

RESUMEN

Environmental DNA (eDNA) applications are transforming the standard of characterizing aquatic biodiversity via the presence, location and abundance of DNA collected from environmental samples. As eDNA studies use DNA fragments as a proxy for the presence of organisms, the ecological properties of the complex and dynamic environments from which eDNA is sampled need to be considered for accurate biological interpretation. In this review, we discuss the role that differing environments play on the major processes that eDNA undergoes between organism and collection, including shedding, decay and transport. We focus on a mechanistic understanding of these processes and highlight how decay and transport models are being developed towards more accurate and robust predictions of the fate of eDNA. We conclude with five recommendations for eDNA researchers and practitioners, to advance current best practices, as well as to support a future model of eDNA spatio-temporal persistence.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , ADN Ambiental/análisis , Ambiente , ADN Ambiental/química , ADN Ambiental/aislamiento & purificación
8.
Philos Trans R Soc Lond B Biol Sci ; 374(1768): 20180186, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30966966

RESUMEN

Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.


Asunto(s)
Adaptación Fisiológica , Organismos Acuáticos/fisiología , Ecosistema , Geografía , Modelos Biológicos , Océanos y Mares
9.
Nature ; 569(7754): 108-111, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019302

RESUMEN

Understanding which species and ecosystems will be most severely affected by warming as climate change advances is important for guiding conservation and management. Both marine and terrestrial fauna have been affected by warming1,2 but an explicit comparison of physiological sensitivity between the marine and terrestrial realms has been lacking. Assessing how close populations live to their upper thermal limits has been challenging, in part because extreme temperatures frequently drive demographic responses3,4 and yet fauna can use local thermal refugia to avoid extremes5-7. Here we show that marine ectotherms experience hourly body temperatures that are closer to their upper thermal limits than do terrestrial ectotherms across all latitudes-but that this is the case only if terrestrial species can access thermal refugia. Although not a direct prediction of population decline, this thermal safety margin provides an index of the physiological stress caused by warming. On land, the smallest thermal safety margins were found for species at mid-latitudes where the hottest hourly body temperatures occurred; by contrast, the marine species with the smallest thermal safety margins were found near the equator. We also found that local extirpations related to warming have been twice as common in the ocean as on land, which is consistent with the smaller thermal safety margins at sea. Our results suggest that different processes will exacerbate thermal vulnerability across these two realms. Higher sensitivities to warming and faster rates of colonization in the marine realm suggest that extirpations will be more frequent and species turnover faster in the ocean. By contrast, terrestrial species appear to be more vulnerable to loss of access to thermal refugia, which would make habitat fragmentation and changes in land use critical drivers of species loss on land.


Asunto(s)
Organismos Acuáticos/fisiología , Temperatura Corporal/fisiología , Ecosistema , Calentamiento Global/estadística & datos numéricos , Calor , Animales , Biodiversidad , Conservación de los Recursos Naturales/tendencias , Océanos y Mares , Factores de Tiempo
10.
Am Nat ; 192(6): 687-697, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30444656

RESUMEN

The temperature dependence of highly conserved subcellular metabolic systems affects ecological patterns and processes across scales, from organisms to ecosystems. Population density at carrying capacity plays an important role in evolutionary processes, biodiversity, and ecosystem function, yet how it varies with temperature-dependent metabolism remains unclear. Though the exponential effect of temperature on intrinsic population growth rate, r, is well known, we still lack clear evidence that population density at carrying capacity, K, declines with increasing per capita metabolic rate, as predicted by the metabolic theory of ecology (MTE). We experimentally tested whether temperature effects on photosynthesis propagate directly to population carrying capacity in a model species, the mobile phytoplankton Tetraselmis tetrahele. After maintaining populations at a fixed resource supply and fixed temperatures for 43 days, we found that carrying capacity declined with increasing temperature. This decline was predicted quantitatively when models included temperature-dependent metabolic rates and temperature-associated body-size shifts. Our results demonstrate that warming reduces carrying capacity and that temperature effects on body size and metabolic rate interact to determine how temperature affects population dynamics. These findings bolster efforts to relate metabolic temperature dependence to population and ecosystem patterns via MTE.


Asunto(s)
Chlorophyta/metabolismo , Conservación de los Recursos Naturales , Dinámica Poblacional , Temperatura , Metabolismo Energético , Fotosíntesis/fisiología , Fitoplancton
11.
Proc Biol Sci ; 285(1886)2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209223

RESUMEN

As thermal regimes change worldwide, projections of future population and species persistence often require estimates of how population growth rates depend on temperature. These projections rarely account for how temporal variation in temperature can systematically modify growth rates relative to projections based on constant temperatures. Here, we tested the hypothesis that time-averaged population growth rates in fluctuating thermal environments differ from growth rates in constant conditions as a consequence of Jensen's inequality, and that the thermal performance curves (TPCs) describing population growth in fluctuating environments can be predicted quantitatively based on TPCs generated in constant laboratory conditions. With experimental populations of the green alga Tetraselmis tetrahele, we show that nonlinear averaging techniques accurately predicted increased as well as decreased population growth rates in fluctuating thermal regimes relative to constant thermal regimes. We extrapolate from these results to project critical temperatures for population growth and persistence of 89 phytoplankton species in naturally variable thermal environments. These results advance our ability to predict population dynamics in the context of global change.


Asunto(s)
Chlorophyta/fisiología , Cambio Climático , Ambiente , Temperatura , Modelos Biológicos , Crecimiento Demográfico
12.
Am Nat ; 189(6): 718-725, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28514639

RESUMEN

Both body size and temperature directly influence consumer-resource dynamics. There is also widespread empirical evidence for the temperature-size rule (TSR), which creates a negative relationship between temperature and body size. However, it is not known how the TSR affects community dynamics. Here we integrate temperature- and size-dependent models to include indirect effects of warming, through changes in body size, to answer the question, How does the TSR affect the predicted response of consumer-resource systems to warming? We find that the TSR is expected to maintain consumer-resource biomass ratios and buffer the community from extinctions under warming. While our results are limited to conditions where organisms are below their thermal optimum, they hold under a range of realistic temperature-size responses and are robust to the type of functional response. Our analyses suggest that the widely observed TSR may reduce the impacts of warming on consumer-resource systems.


Asunto(s)
Tamaño Corporal , Temperatura , Animales , Biomasa , Modelos Teóricos
13.
Science ; 355(6332)2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28360268

RESUMEN

Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.


Asunto(s)
Biodiversidad , Cambio Climático , Animales , Abastecimiento de Alimentos , Salud , Humanos
14.
Mol Biol Evol ; 33(8): 1988-2001, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27189549

RESUMEN

Selection associated with competition among males or sexual conflict between mates can create positive selection for high rates of molecular evolution of gamete recognition genes and lead to reproductive isolation between species. We analyzed coding sequence and repetitive domain variation in the gene encoding the sperm acrosomal protein bindin in 13 diverse sea star species. We found that bindin has a conserved coding sequence domain structure in all 13 species, with several repeated motifs in a large central region that is similar among all sea stars in organization but highly divergent among genera in nucleotide and predicted amino acid sequence. More bindin codons and lineages showed positive selection for high relative rates of amino acid substitution in genera with gonochoric outcrossing adults (and greater expected strength of sexual selection) than in selfing hermaphrodites. That difference is consistent with the expectation that selfing (a highly derived mating system) may moderate the strength of sexual selection and limit the accumulation of bindin amino acid differences. The results implicate both positive selection on single codons and concerted evolution within the repetitive region in bindin divergence, and suggest that both single amino acid differences and repeat differences may affect sperm-egg binding and reproductive compatibility.


Asunto(s)
Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Espermatozoides/fisiología , Estrellas de Mar/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Evolución Biológica , Codón , Evolución Molecular , Femenino , Fertilización , Masculino , Preferencia en el Apareamiento Animal , Filogenia , Aislamiento Reproductivo , Especificidad de la Especie , Espermatozoides/metabolismo , Estrellas de Mar/metabolismo
15.
Ecology ; 96(1): 3-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26236884

RESUMEN

Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification'and the ecological changes it portends.


Asunto(s)
Cambio Climático , Ecología , Ecosistema , Océanos y Mares , Agua de Mar/química , Aclimatación , Animales , Modelos Biológicos
16.
Ecol Lett ; 18(9): 944-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26189556

RESUMEN

Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.


Asunto(s)
Cambio Climático , Ecosistema , Peces/fisiología , Invertebrados/fisiología , Temperatura , Animales , Australia , Tamaño Corporal , Dieta/veterinaria , Cadena Alimentaria , Fenómenos de Retorno al Lugar Habitual , Funciones de Verosimilitud , Modelos Lineales , Biología Marina , Actividad Motora , Océanos y Mares , Densidad de Población , Reproducción
17.
Proc Natl Acad Sci U S A ; 111(15): 5610-5, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24616528

RESUMEN

Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events.


Asunto(s)
Aclimatación/fisiología , Anfibios/fisiología , Conducta Animal/fisiología , Regulación de la Temperatura Corporal/fisiología , Ecosistema , Insectos/fisiología , Reptiles/fisiología , Animales , Geografía , Especificidad de la Especie , Temperatura
18.
Evolution ; 68(5): 1294-305, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24410379

RESUMEN

Reproductive isolation--the key event in speciation--can evolve when sexual conflict causes selection favoring different combinations of male and female adaptations in different populations. Likely targets of such selection include genes that encode proteins on the surfaces of sperm and eggs, but no previous study has demonstrated intraspecific coevolution of interacting gamete recognition genes under selection. Here, we show that selection drives coevolution between an egg receptor for sperm (OBi1) and a sperm acrosomal protein (bindin) in diverging populations of a sea star (Patiria miniata). We found positive selection on OBi1 in an exon encoding part of its predicted substrate-binding protein domain, the ligand for which is found in bindin. Gene flow was zero for the parts of bindin and OBi1 in which selection for high rates of amino acid substitution was detected; higher gene flow for other parts of the genome indicated selection against immigrant alleles at bindin and OBi1. Populations differed in allele frequencies at two key positively selected sites (one in each gene), and differences at those sites predicted fertilization rate variation among male-female pairs. These patterns suggest adaptively evolving loci that influence reproductive isolation between populations.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Especiación Genética , Interacciones Espermatozoide-Óvulo , Estrellas de Mar/genética , Animales , Femenino , Células Germinativas/metabolismo , Células Germinativas/fisiología , Masculino , Modelos Genéticos , Población/genética , Receptores de Superficie Celular/genética , Aislamiento Reproductivo , Selección Genética , Estrellas de Mar/fisiología
19.
Trends Ecol Evol ; 29(2): 117-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24355315

RESUMEN

Ocean acidification poses a global threat to biodiversity, yet species might have the capacity to adapt through evolutionary change. Here we summarize tools available to determine species' capacity for evolutionary adaptation to future ocean change and review the progress made to date with respect to ocean acidification. We focus on two key approaches: measuring standing genetic variation within populations and experimental evolution. We highlight benefits and challenges of each approach and recommend future research directions for understanding the modulating role of evolution in a changing ocean.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Genómica/métodos , Océanos y Mares , Adaptación Fisiológica/genética , Animales , Dióxido de Carbono/metabolismo , Aptitud Genética , Variación Genética , Agua de Mar
20.
Ecol Evol ; 3(3): 640-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23532786

RESUMEN

Fertilization proteins of marine broadcast spawning species often show signals of positive selection. Among geographically isolated populations, positive selection within populations can lead to differences between them, and may result in reproductive isolation upon secondary contact. Here, we test for positive selection in the reproductive compatibility locus, bindin, in two populations of a sea star on either side of a phylogeographic break. We find evidence for positive selection at codon sites in both populations, which are under neutral or purifying selection in the reciprocal population. The signal of positive selection is stronger and more robust in the population where effective population size is larger and bindin diversity is greater. In addition, we find high variation in coding sequence length caused by large indels at two repetitive domains within the gene, with greater length diversity in the larger population. These findings provide evidence of population-divergent positive selection in a fertilization compatibility locus, and suggest that sexual selection can lead to reproductive divergence between conspecific marine populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...